0 CpxTRS
↳1 NestedDefinedSymbolProof (BOTH BOUNDS(ID, ID), 0 ms)
↳2 CpxTRS
↳3 TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID), 0 ms)
↳4 CpxWeightedTrs
↳5 TypeInferenceProof (BOTH BOUNDS(ID, ID), 0 ms)
↳6 CpxTypedWeightedTrs
↳7 CompletionProof (UPPER BOUND(ID), 0 ms)
↳8 CpxTypedWeightedCompleteTrs
↳9 NarrowingProof (BOTH BOUNDS(ID, ID), 0 ms)
↳10 CpxTypedWeightedCompleteTrs
↳11 CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID), 0 ms)
↳12 CpxRNTS
↳13 SimplificationProof (BOTH BOUNDS(ID, ID), 0 ms)
↳14 CpxRNTS
↳15 CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID), 0 ms)
↳16 CpxRNTS
↳17 IntTrsBoundProof (UPPER BOUND(ID), 375 ms)
↳18 CpxRNTS
↳19 IntTrsBoundProof (UPPER BOUND(ID), 93 ms)
↳20 CpxRNTS
↳21 ResultPropagationProof (UPPER BOUND(ID), 0 ms)
↳22 CpxRNTS
↳23 IntTrsBoundProof (UPPER BOUND(ID), 578 ms)
↳24 CpxRNTS
↳25 IntTrsBoundProof (UPPER BOUND(ID), 103 ms)
↳26 CpxRNTS
↳27 FinalProof (⇔, 0 ms)
↳28 BOUNDS(1, n^2)
times(x, plus(y, s(z))) → plus(times(x, plus(y, times(s(z), 0))), times(x, s(z)))
times(x, 0) → 0
times(x, s(y)) → plus(times(x, y), x)
plus(x, 0) → x
plus(x, s(y)) → s(plus(x, y))
times(x, s(y)) → plus(times(x, y), x)
plus(x, s(y)) → s(plus(x, y))
plus(x, 0) → x
times(x, 0) → 0
times(x, s(y)) → plus(times(x, y), x) [1]
plus(x, s(y)) → s(plus(x, y)) [1]
plus(x, 0) → x [1]
times(x, 0) → 0 [1]
times(x, s(y)) → plus(times(x, y), x) [1]
plus(x, s(y)) → s(plus(x, y)) [1]
plus(x, 0) → x [1]
times(x, 0) → 0 [1]
times :: s:0 → s:0 → s:0 s :: s:0 → s:0 plus :: s:0 → s:0 → s:0 0 :: s:0 |
(a) The obligation is a constructor system where every type has a constant constructor,
(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:
none
(c) The following functions are completely defined:
times
plus
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
Runtime Complexity Weighted TRS with Types. The TRS R consists of the following rules:
The TRS has the following type information:
Rewrite Strategy: INNERMOST |
0 => 0
plus(z, z') -{ 1 }→ x :|: x >= 0, z = x, z' = 0
plus(z, z') -{ 1 }→ 1 + plus(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = x
times(z, z') -{ 2 }→ plus(plus(times(x, y'), x), x) :|: z' = 1 + (1 + y'), x >= 0, y' >= 0, z = x
times(z, z') -{ 2 }→ plus(0, x) :|: x >= 0, z' = 1 + 0, z = x
times(z, z') -{ 1 }→ 0 :|: x >= 0, z = x, z' = 0
plus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
plus(z, z') -{ 1 }→ 1 + plus(z, z' - 1) :|: z >= 0, z' - 1 >= 0
times(z, z') -{ 2 }→ plus(plus(times(z, z' - 2), z), z) :|: z >= 0, z' - 2 >= 0
times(z, z') -{ 2 }→ plus(0, z) :|: z >= 0, z' = 1 + 0
times(z, z') -{ 1 }→ 0 :|: z >= 0, z' = 0
{ plus } { times } |
plus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
plus(z, z') -{ 1 }→ 1 + plus(z, z' - 1) :|: z >= 0, z' - 1 >= 0
times(z, z') -{ 2 }→ plus(plus(times(z, z' - 2), z), z) :|: z >= 0, z' - 2 >= 0
times(z, z') -{ 2 }→ plus(0, z) :|: z >= 0, z' = 1 + 0
times(z, z') -{ 1 }→ 0 :|: z >= 0, z' = 0
plus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
plus(z, z') -{ 1 }→ 1 + plus(z, z' - 1) :|: z >= 0, z' - 1 >= 0
times(z, z') -{ 2 }→ plus(plus(times(z, z' - 2), z), z) :|: z >= 0, z' - 2 >= 0
times(z, z') -{ 2 }→ plus(0, z) :|: z >= 0, z' = 1 + 0
times(z, z') -{ 1 }→ 0 :|: z >= 0, z' = 0
plus: runtime: ?, size: O(n1) [z + z'] |
plus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
plus(z, z') -{ 1 }→ 1 + plus(z, z' - 1) :|: z >= 0, z' - 1 >= 0
times(z, z') -{ 2 }→ plus(plus(times(z, z' - 2), z), z) :|: z >= 0, z' - 2 >= 0
times(z, z') -{ 2 }→ plus(0, z) :|: z >= 0, z' = 1 + 0
times(z, z') -{ 1 }→ 0 :|: z >= 0, z' = 0
plus: runtime: O(n1) [1 + z'], size: O(n1) [z + z'] |
plus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
plus(z, z') -{ 1 + z' }→ 1 + s' :|: s' >= 0, s' <= 1 * z + 1 * (z' - 1), z >= 0, z' - 1 >= 0
times(z, z') -{ 3 + z }→ s :|: s >= 0, s <= 1 * 0 + 1 * z, z >= 0, z' = 1 + 0
times(z, z') -{ 2 }→ plus(plus(times(z, z' - 2), z), z) :|: z >= 0, z' - 2 >= 0
times(z, z') -{ 1 }→ 0 :|: z >= 0, z' = 0
plus: runtime: O(n1) [1 + z'], size: O(n1) [z + z'] |
plus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
plus(z, z') -{ 1 + z' }→ 1 + s' :|: s' >= 0, s' <= 1 * z + 1 * (z' - 1), z >= 0, z' - 1 >= 0
times(z, z') -{ 3 + z }→ s :|: s >= 0, s <= 1 * 0 + 1 * z, z >= 0, z' = 1 + 0
times(z, z') -{ 2 }→ plus(plus(times(z, z' - 2), z), z) :|: z >= 0, z' - 2 >= 0
times(z, z') -{ 1 }→ 0 :|: z >= 0, z' = 0
plus: runtime: O(n1) [1 + z'], size: O(n1) [z + z'] times: runtime: ?, size: O(n2) [z + 2·z·z'] |
plus(z, z') -{ 1 }→ z :|: z >= 0, z' = 0
plus(z, z') -{ 1 + z' }→ 1 + s' :|: s' >= 0, s' <= 1 * z + 1 * (z' - 1), z >= 0, z' - 1 >= 0
times(z, z') -{ 3 + z }→ s :|: s >= 0, s <= 1 * 0 + 1 * z, z >= 0, z' = 1 + 0
times(z, z') -{ 2 }→ plus(plus(times(z, z' - 2), z), z) :|: z >= 0, z' - 2 >= 0
times(z, z') -{ 1 }→ 0 :|: z >= 0, z' = 0
plus: runtime: O(n1) [1 + z'], size: O(n1) [z + z'] times: runtime: O(n2) [3 + z + 2·z·z' + 4·z'], size: O(n2) [z + 2·z·z'] |